激光写光电子学进展

电荷补偿剂Li⁺的掺入对CaMgSiO₄:Sm³⁺红色 荧光粉发光性能的影响

阿依努热木·吐尔逊^{1,2}, 王磊^{1,2}, 苏比伊努尔·吉力力^{1,2}, 艾尔肯·斯地克^{1,2*} ¹新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054; ²新疆发光矿物与光功能材料研究重点实验室, 新疆 乌鲁木齐 830054

摘要 为了提高 Sm³⁺在 CaMgSiO₄中的发光性能,采用高温固相法制备了 Li⁺作为电荷补偿剂掺入 CaMgSiO₄:Sm³⁺的硅酸盐发光材料。实验结果表明,所制备的 CaMgSiO₄:x Sm³⁺, y Li⁺样品均为纯相,Sm³⁺和 Li⁺的掺入并没有导致晶体结构的改变。在 400 nm 近紫外波长激发下,CaMgSiO₄:Sm³⁺的发射峰分别位于 562、576、601、650 nm 处,这是由 Sm³⁺的 4f-4f跃迁引起的。此外,从共掺杂样品的光谱中可以看出 Li⁺的掺入明显提高了 Sm³⁺的发光强度和发射峰积分面积。荧光粉的色坐标在红色区域(0.605,0.394)且色纯度高达 93.3%。当温度升到 150 ℃时,发射峰的峰值强度保持在室温时的73.5%,这表明该荧光粉具有较好的热稳定性。以上结果表明,该荧光粉在固体照明领域具有潜在的应用前景。 关键词 材料; CaMgSiO₄:Sm³⁺,Li⁺荧光粉; Li⁺电荷补偿剂; 色纯度; 发射峰积分面积; 热稳定性**中图分类号** O482.31;O614.33 **文献标志码 DOI**: 10.3788/LOP202259.1316002

Effect of Charge-Compensator Li⁺ Doping on Luminescence Performance of CaMgSiO₄: Sm³⁺ Red-Emitting Phosphor

Tuerxun · Ayinuremu^{1,2}, Wang Lei^{1,2}, Jilili · Subiyinuer^{1,2}, Sidike · Aierken^{1,2*}

¹School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, China; ²Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, Urumqi 830054, Xinjiang, China

Abstract We prepared Li⁺ as a charge compensator using the high-temperature solid-state method and doped it into the silicate matrix of CaMgSiO₄: Sm³⁺ to improve the luminescence properties of Sm³⁺ in CaMgSiO₄. The experimental results show that the CaMgSiO₄: Sm³⁺, y Li⁺ samples are pure phases, and introducing Sm³⁺ and Li⁺ do not change the crystal structure. Under the excitation of the near-ultraviolet of 400 nm caused by the 4f-4f transition of Sm³⁺ ions, the emission peaks of CaMgSiO₄: Sm³⁺ are 562, 576, 601, and 650 nm respectively. Additionally, from the spectra of co-doped samples, incorporating Li⁺ significantly enhances the luminescence intensity and emission peak integral area of Sm³⁺. Moreover, the color coordinates of the samples are in the red region (0. 605, 0. 394) and the color purity is up to 93. 3%. At 150 °C, the peak intensity remains at 73. 5% of that at room temperature, indicating that the phosphor has good thermal stability. The phosphor has a potential application prospect in solid lighting.

Key words materials; $CaMgSiO_4$: Sm^{3+} , Li^+ phosphor; Li^+ charge-compensator; color purity; integrated area of emission spectrum; thermal stability

1引言

白光 LED 作为 21 世纪引人注目的一种新型光 源,被广泛应用于各种照明领域,如日常照明、农业种 植和液晶显示器等。随着全球电力消耗的不断增加, 市场对光源的需求也在提高,因此出现了具有功率高、 寿命长、节能、环保等优点的固态发光白光LED^[1-3]。 白光LED实现白光发射常见的一种方法是将单个或 多个荧光粉集成在LED芯片上,并使用紫外光或蓝光 LED芯片激发荧光粉发出荧光,形成白光发射^[4]。其

收稿日期: 2021-12-27; 修回日期: 2022-02-28; 录用日期: 2022-03-03

基金项目:新疆自治区高校科研计划项目(XJEDU2017I009)、新疆师范大学校级科研平台招标课题(KWFG2005)

通信作者: *aierkenjiang@sina.com

研究论文

中,目前商用的由蓝光芯片和黄色荧光粉 YAG:Ce³⁺ 组成的白光 LED 缺少红光成分,导致制造的 LED 器 件存在色温高、显色指数低等缺陷。因此,开发一类具 有高性能的新型红色荧光粉材料对满足当前照明技术 的需求至关重要^[5-6]。

Sm³⁺在新型稀土发光材料中是个比较重要的激 活剂之一。由于其特有的⁴G_{5/2}-⁶H₁ (J = 5/2, 7/2, 9/2,11/2)跃迁而发出橙红色的光,因此,可以弥补传 统白光LED缺少红光的缺陷,有利于提高显色指数。 此外,它在紫外-可见光区具有强烈的吸收^[7]。所以, 基于 Sm³⁺掺杂的新型荧光粉的研究引起了广泛的关 注。Singh等^[8]采用溶胶-凝胶法制备了具有氧磷灰石 结构的 Sr₂La₈(SiO₄)₆O₂: Sm³⁺ 橙红色荧光粉,发现 Sm³⁺的摩尔分数为0.07时,该荧光粉的发光强度最 强,在固体照明领域具有应用前景。Shi等^[9]对NaY (MoO₄)₂:Sm³⁺荧光粉的光致发光特性和热稳定性进 行了分析,发现该荧光粉在温度传感器方面具有潜在 的应用价值。Ma等^[10]通过高温固相法制备了被近紫 外光能够激发的Ba₃Sc(PO₄)₃:Sm³⁺橙红色荧光粉,研 究发现该荧光粉具有良好的量子效率,其量子效率高 达 53.5%。此外,通过共掺杂 Li⁺, K⁺, Na⁺ 等电荷补 偿剂离子来提高Sm³⁺掺杂的红色荧光粉的发光性能 的研究越来越多[11-13]。在稀土离子掺杂的荧光粉中, 选择合适的基质材料是实现荧光粉有效发光的重要因 素。与其他的基质材料相比,硅酸盐材料由于其成本 低、物理化学热稳定性好,并且可调发光性能高等特点 成为了广大研究者的首选研究对象。本文选用的 CaMgSiO4硅酸盐属于Pbnm空间群的橄榄型晶体结 构。在晶体中,每个Ca都由具有C。点对称的O原子形 成八配位的多面体。每个Mg也是通过Ci点对称的O 原子形成八配位的多面体。由于 Sm³⁺具有低对称性 特征,钙的位点非常适合它的发光^[14]。据本课题组所 知,其他课题组对Ce³⁺和Eu²⁺掺杂的CaMgSiO₄发光 材料的发光特性已有研究并报道过[15-16]。然而,掺杂 Sm³⁺的CaMgSiO₄荧光粉的发光性能研究还较少。

本 文 通 过 高 温 固 相 法 合 成 了 CaMgSiO₄: 2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2)红色荧光粉。 利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)分析 了相的形成和形貌的变化。共掺杂样品在近紫外波长 为 400 nm 激 发 下,具有 较 强 的 红 色 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ (601 nm)发射,并且电荷补偿剂 Li⁺ 使晶格内部达到 平衡,使荧光粉的发射强度和发射峰积分面积有所提 高。荧光粉的色坐标均在红色区域,具有较高的色纯 度,而且热稳定性也比较好。此研究为该荧光粉在固 体照明上的应用提供了实验依据。

2 实 验

2.1 样品制备

采用高温固相法在1350℃,360 min条件下在

第 59 卷 第 13 期/2022 年 7 月/激光与光电子学进展

MF-1750C型贝意克高温箱式炉内制备了 CaMgSiO₄: 2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2)新型红色 荧光粉。用到的主要原料如表1所示。

表1 CaMgSiO₄:Sm³⁺, Li⁺荧光粉主要原料 Table 1 Main raw materials of CaMgSiO₄:Sm³⁺, Li⁺ phosphor

Chemical formula of raw material	Purity	Production company
$CaCO_3$	99.99%	Shanghai Aladdin Biochemical Technology Co. , Ltd.
MgO	99.99%	Shanghai Aladdin Biochemical Technology Co. , Ltd.
SiO_2	99.99%	Shanghai Aladdin Biochemical Technology Co. , Ltd.
$\mathrm{Sm}_{2}\mathrm{O}_{3}$	99.90%	Shanghai Aladdin Biochemical Technology Co. , Ltd.
Li_2CO_3	99.99%	Shanghai Aladdin Biochemical Technology Co. , Ltd.

所有原料均用物质的量的比例来计算(摩尔分数)。称量好的药品分别放在玛瑙研钵中充分研磨,一 直到混合均匀为止(一般需要30min)。将均匀混合的 样品分别放入刚玉坩埚里,在高温箱式炉里煅烧,升温 速率为5℃/min。当样品冷却到室温时,取出再二次 研磨进行表征。

2.2 测试方法

使用的仪器参数和实验方法如表2所示。本研究 有关测量均在室温下进行。

表 2 测试方法和仪器参数 Table 2 Test method and instrument parameters

Experimental method	Test instrument name (or software name)
Phase analysis	Shimadzu XRD-6100 powder diffractometer
Scanning electron microscope Energy dispersion spectrum	JSM-7610F plus emission scanning electron microscope X-MaxN energy spectrometer
Photoluminescence spectrum (lifetime)	FLS920 steady/transient fluorescence spectrometer, Edinburgh, UK
Thermal stability Color coordinates	FLS980 high temperature fluorescent CIE 1931 color space

3 实验结果与讨论

3.1 X射线衍射分析

图 1(a)是 CaMgSiO₄: 2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2)样品的 XRD 图。通过 XRD 来检测制 备样品的相纯度。XRD 结果表明:所制备样品的衍射 峰都与标准的 PDF#11-0353 卡片一致,少量的 Sm³⁺、 Li⁺的掺入对主晶格的晶体结构没有太大的影响,说明

图 1 样品的物相分析。(a) CaMgSiO₄:2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2)的 XRD 图;(b) CaMgSiO₄的晶体结构 Fig. 1 Phase analysis of sample. (a) XRD patterns of CaMgSiO₄:2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2); (b) crystal structure of CaMgSiO₄

合成的样品均为纯相。图 1(b)是 CaMgSiO₄的晶体结构。CaMgSiO₄对应的空间群为Pbnm, $a = \beta = \gamma = 90^{\circ}$ 是 正交晶系结构,晶胞参数 $a = 4.763 \times 10^{-10}$ m, $b = 10.849 \times 10^{-10}$ m, $c = 6.294 \times 10^{-10}$ m, $v = 325.23 \times 10^{-30}$ m³。晶体中可能被取代的阳离子格位分别为: Ca²⁺($r = 1.12 \times 10^{-10}$ m, CN 为8, CN 表示配位数)、Mg²⁺($r = 0.89 \times 10^{-10}$ m, CN 为8)。掺杂的稀土离子半径为:Sm³⁺($r = 1.079 \times 10^{-10}$ m, CN 为8)。根据离子半径相近原理,掺杂的稀土离子应将占据与它离子半径相近原理,掺杂的稀土离子应将占据与它离子半径相近的阳离子格位,因此在样品中Sm³⁺更倾向于占据Ca²⁺格位^[17]。

图 2(a)~2(d)是 CaMgSiO₄: 2% Sm³⁺, y% Li⁺ (y = 0, 0.5, 1, 1.5, 2)的晶胞参数变化图。随着 Li⁺ 掺入摩尔分数的增加样品的晶胞参数变化有所不 同,用正交晶系晶面间距 d(hkl)与晶面组(*hkl*)的关系 式为

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}, \qquad (1)$$

式中:a,b,c为细胞棱长;v = abc为晶胞体积。从图可知,随着Li⁺摩尔分数增大,晶胞参数a, b, c, v值均在不同程度上减小,原因在于大半径的Ca²⁺格位被小半径的Sm³⁺、Li⁺取代后,晶胞体积收缩,导致晶胞参数逐渐呈下降趋势。

通过 SEM 对样品的形貌进行了表征。从图 3(a)~ 3(b)可以看出,它由凝聚球形和多边形颗粒组成,样品 表面较为粗糙,是较为紧密的球状结构。由于样品在 高温下烧结,存在晶粒高度团聚现象,这也是高温固相 法固有的特点。图 3(c)是该荧光粉的能量色散光谱 图(EDS)和原子比。从图可知,样品颗粒中含有 O、 Mg、Si、Ca、Sm 等5种元素,没有多余的杂质,其证明 制备出来的荧光粉是纯相。各元素原子的摩尔分数分

- 图 2 CaMgSiO₄: 2% Sm³⁺, y% Li⁺(y = 0, 0.5, 1, 1.5, 2) 的晶胞参数随Li⁺掺入摩尔分数的变化图。(a) 参数*a*的 变化;(b)参数*b*的变化;(c)参数*c*的变化;(d)参数*v*的 变化
- Fig. 2 Variation of unit cell parameters of CaMgSiO₄:2% Sm³⁺, y% Li⁺ (y = 0, 0.5, 1, 1.5, 2) with doping concentration of Li⁺. (a) Variation of a; (b) variation of b; (c) variation of c; (d) variation of v

别为52.53%、11.41%、12.78%、22.09%、1.19%。 其中Sm元素的含量明显低于其他几种元素^[19]。

3.2 CaMgSiO₄:x% Sm³⁺荧光粉的发光特性

图 4(a)是 CaMgSiO₄: x% Sm³⁺(x = 1, 1.5, 2, 2.5)荧光粉在 601 nm 监测下的激发光谱。光谱中在 300~500 nm 范围内出现一系列与 Sm³⁺的 f-f跃迁相关

图 3 CaMgSiO₄:2% Sm³⁺荧光粉的形貌分析。(a)~(b) SEM 图像;(c) EDS 和各元素原子的摩尔分数

Fig. 3 Morphology analysis of CaMgSiO₄: 2% Sm³⁺ phosphor. (a)~(b) SEM image; (c) EDS and mol fraction of atoms of each element

图 4 CaMgSiO₄:x% Sm³⁺(x = 1, 1.5, 2, 2.5)荧光粉样品的荧光光谱。(a)激发光谱;(b)发射光谱 Fig. 4 Fluorescence spectra of CaMgSiO₄:x% Sm³⁺(x = 1, 1.5, 2, 2.5) phosphor samples. (a) Excitation spectra; (b) emission spectra

的特征激发峰,并且随着 Sm³⁺摩尔分数的增加激发强 度也在增强,其中摩尔分数为 2% 时发光强度最强,即 最强激发峰在 400 nm 处出现,这是由 Sm³⁺的⁶H_{5/2} → ⁶G_{11/2}跃迁引起的。激发结果表明,所制备的荧光粉可 以 被 近 紫 外 LED 芯 片 有 效 地 激 发^[20]。图 4(b)是 CaMgSiO₄: x% Sm³⁺(x = 1, 1.5, 2, 2.5)荧光粉在 400 nm 激发下的发射光谱。光谱显示出 4 个主要的特 征发射峰,分别是562、576、601、650 nm,其中由⁴G₅₂→⁶H₉₂ 跃迁引起的最强发射峰(601 nm)具有强烈的红色发 射。光谱中随着 Sm³⁺的掺杂摩尔分数的增加,光谱的 位置没有变化,但发射强度有明显提高。其中 Sm³⁺的 掺杂摩尔分数为2% 时发光强度最强,之后随着摩尔 分数的增加发光强度逐渐减弱,这是由摩尔分数猝灭 引起的^[21]。引起摩尔分数猝灭的原因可能是随着

研究论文

Sm³⁺含量的增加,Sm³⁺-Sm³⁺离子之间的临界距离变 短,导致相邻激活剂离子之间的相互作用增加,从而产 生非辐射弛豫,导致了辐射的重新吸收,并降低了发射 强度。一般来说,计算临界距离*R*。来确定相互作用类 型。由式(2)^[22]计算得

$$R_{\rm c} = 2 \left(\frac{3v}{4\pi X_{\rm e} N} \right)^{\frac{1}{3}},\tag{2}$$

式中: R_c 是摩尔分数猝灭临界距离; X_c 是Sm³⁺临界摩 尔分数;v是晶胞体积;N是晶胞中单位单元格数。该 系列样品中 $v=325.23 \times 10^{-30}$ m³, $X_c=0.02$, $N=4_o$ 得出 $R_c=21.79 \times 10^{-10}$ m,大于 5×10^{-10} m。说明此摩 尔分数猝灭机理属于多极相互作用。

单一激活剂掺入基质中时,样品的发光强度I与激活剂摩尔分数x的关系^[23]为

$$\lg(I/x) = c - (\theta/3) \lg x, \tag{3}$$

式中: θ 是多极相互作用函数;c为常数。当 θ = 6, 8, 10时分别属于电偶极-电偶极、电偶极-电四极、电四极-电四极相互作用^[24]。图 5是样品在 400 nm 近紫外 光激发下,x = 0.01, 0.015, 0.02, 0.025时在 601 nm 处 lg(I/x)与 lg(x)的关系,发现拟合斜率为 $-\theta/3 \approx$ -1.984,即 $\theta \approx 6$ 时,对应于电偶极-电偶极相互 作用。

3.3 电荷补偿剂对 CaMgSiO₄: x% Sm³⁺荧光粉发光 特性的影响

在CaMgSiO₄:Sm³⁺荧光粉中,Sm³⁺取代基质中的 Ca²⁺阳离子,并占据其格位进入基质中,由于Sm³⁺离 子带有3个正电荷,而Ca²⁺离子只带有2个正电荷,因 此Sm³⁺处在一个正电荷过剩的状态,所以在基质中出 现电荷不平衡。这导致Sm³⁺发光中心周围的晶格扭 曲和晶体缺陷,其对发光材料的发光性能造成一定的 影响,因此,掺入Li⁺作为电荷补偿剂来减少阳离子被

(a)

ntensity /arb.units

560

第 59 卷 第 13 期/2022 年 7 月/激光与光电子学进展

图 5 CaMgSiO₄:x% Sm³⁺(x = 1, 1.5, 2, 2.5)的摩尔分数猝 灭机理图

Fig. 5 Concentration quenching mechanism diagram of CaMgSiO₄: x % Sm³⁺(x = 1, 1.5, 2, 2.5)

取代时形成的电荷差异。图 6(a)是 CaMgSiO4:2% Sm³⁺和CaMgSiO₄:2%Sm³⁺, 1.5%Li⁺代表样品的发 射光谱。由图可知,Li⁺的掺入对CaMgSiO₄:Sm³⁺荧 光粉发射光谱的峰位和峰形几乎没有影响。但是对 CaMgSiO4:Sm3+荧光粉的发射强度有明显影响,其中 Li⁺的掺杂摩尔分数为1.5%时样品的发光强度为最 强,并且比没有掺杂Li⁺时的提高了2.3倍。说明Li⁺ 的掺入有利于提高CaMgSiO4:2% Sm3+红色荧光粉的 发光性能。图 6(b)是 CaMgSiO4:2% Sm³⁺, 1.5% Li⁺ 发射光谱中610 nm 处的发射峰积分面积与Li⁺摩尔分 数的变化关系图。从图可知,发射峰积分面积随着 Li^+ 掺杂摩尔分数的增加分别提高了 25%、42%、 63%、85%、71%。由于掺入了电荷补偿剂Li⁺,减少 了基质中的电荷不平衡,为荧光粉提供了更好的化学 稳定性,使晶格应力减小,晶格更加完整,有效减少无 辐射跃迁,提高了荧光材料的发光强度以及发射峰积 分面积[25]。

图 6 CaMgSiO₄:2% Sm³⁺, y% Li⁺的荧光性能。(a)CaMgSiO₄:2% Sm³⁺和 CaMgSiO₄:2% Sm³⁺, 1.5% Li⁺荧光粉的发射光谱; (b)CaMgSiO₄:2% Sm³⁺, y% Li⁺样品中Li⁺的摩尔分数与 601 nm 处发射峰积分面积的关系

Fig. 6 Fluorescence performance of CaMgSiO₄: 2% Sm³⁺, y% Li⁺. (a) Emission spectra of CaMgSiO₄: 2% Sm³⁺ and CaMgSiO₄: 2% Sm³⁺, 1.5% Li⁺ phosphors; (b) relationship between integrated area at 601 nm in emission spectrum of CaMgSiO₄: 2% Sm³⁺, y% Li⁺ and concentration of Li⁺

研究论文

图 7(a)是 CaMgSiO₄:2% Sm³⁺, y% Li⁺系列样品 在 601 nm 处的寿命衰减曲线。可以看出,随着 Li⁺摩 尔分数的增大,Sm³⁺寿命逐渐增大。当y = 1.5%时, 寿命值达到最大,为2.08 ms。寿命衰减曲线规律与 图 4(b)所示的发射光谱规律完全一致,说明对于 CaMgSiO₄:2% Sm³⁺基质而言,Li⁺最佳掺杂摩尔分数 为1.5%,此时的发光效率最高,寿命最长,适合用于 白光 LED 照明中。荧光粉的寿命值由下式^[26]计算:

$$\tau^* = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} , \qquad (4)$$

第 59 卷 第 13 期/2022 年 7 月/激光与光电子学进展

式中: τ^{*} 表示平均寿命; τ_{1} 是短寿命; τ_{2} 是长寿命; A_{1} 、 A_{2} 是拟合参数。对荧光曲线拟合得到 A_{1} 、 τ_{1} 、 A_{2} 、 τ_{2} 的拟 合系数均在1.0~1.3之间。

图 7(b)是 CaMgSiO₄: Sm³⁺荧光粉的发射机理。 在 400 nm 激发下, Sm³⁺在⁶H_{5/2}基态的电子通过吸收辐射能量跃迁到⁶G_{11/2}激发态。这些被激发的电子通过 非辐射跃迁(NR)弛豫到⁴G_{5/2}能级。此外,电子由⁴G_{5/2} 能级跃迁到能量较低的⁶H_J(J = 5/2、7/2、9/2、11/2) 能级时释放能量,并分别在 562、576、601、650 nm 处 出现 Sm³⁺的特征橙色和红色发射^[27]。

图 7 荧光衰减曲线和发射机理。(a)CaMgSiO₄:2% Sm³⁺, y% Li⁺系列样品在 601 nm 处的寿命衰减曲线:(b)CaMgSiO₄:Sm³⁺荧光 粉的发射机理

Fig. 7 Life decay curves and emission mechanism. (a) Life decay curves of CaMgSiO₄: 2% Sm³⁺, y% Li⁺ samples at 601 nm;
 (b) emission mechanism of CaMgSiO₄: Sm³⁺ phosphors

CIE 色坐标是评估样品发光性能的基本参数之一。图 8是 CaMgSiO₄:2% Sm³⁺, 1.5% Li⁺代表样品的色坐标和其在日光灯及近紫外灯 365 nm 激发下的照片。图中显示,制备出的荧光粉在日光灯下呈现为白色粉末,而在近紫外灯下发出明亮的红色光。从CIE 坐标来看样品的色坐标在红光区域及色坐标为(0.6063, 0.3931)。同样,色纯度也是研究荧光粉发光性能的重要参数。样品的色纯度由下式^[28]计算:

$$C_{\rm p} = \frac{\sqrt{(x_{\rm s} - x_{\rm i})^2 + (y_{\rm s} - y_{\rm i})^2}}{\sqrt{(x_{\rm d} - x_{\rm i})^2 + (y_{\rm d} - y_{\rm i})^2}} \times 100\%, \quad (5)$$

式中: C_P 为色纯度; $(x_a, y_a) = (0.6306, 0.3693)$ 为主波 长 600 nm 对应的国际标准色坐标; $(x_i, y_i) = (0.333, 0.333)$ 为标准白光的色坐标; (x_s, y_s) 为代表样品的色 坐标,则计算得出的色纯度为93.3%。由于电荷补偿 剂 Li⁺的掺入增强了电偶极跃迁引起的特征红色发射 的增强,因此色纯度也有所提高。

众所周知,热稳定性是测量荧光粉发光性能的关键指标之一。图9是CaMgSiO₄:2%Sm³⁺,1.5%Li⁺ 荧光粉在不同温度(25℃~250℃)下对应的变温光谱 峰值强度变化图。从图可知,当温度升到150℃时,发 射峰的峰值强度保持在室温的73.5%,这表明该荧光 粉具有较好的热稳定性,其在固体照明领域具有潜在 的应用前景^[29]。

图 8 CaMgSiO₄:2% Sm³⁺, 1.5%Li⁺样品的色坐标, 插图为其 在日光灯及近紫外灯 365 nm 激发下的照片

Fig. 8 Color coordinates of CaMgSiO₄: 2% Sm³⁺, 1.5% Li⁺ sample, illustrated as photos of 365 nm excitation of fluorescent lamps and near-ultraviolet lamps

图 9 CaMgSiO₄:2% Sm³⁺, 1.5% Li⁺样品在不同温度下对应 的归一化光谱峰值强度变化图

Fig. 9 Normalized peak intensities of $CaMgSiO_4{:}~2\%~Sm^{3+}$, $1.~5\%~Li^+~sample~as~a~function~of~temperature$

4 结 论

通过高温固相法制备了 $CaMgSiO_4$: 2% Sm^{3+} , y% Li⁺(y = 1, 1.5, 2, 2.5)红色荧光粉。XRD 结果 表明,所制备的样品均为纯相,Sm³⁺、Li⁺的掺入对荧 光粉的晶体结构几乎没有影响。SEM、EDS分析表 明,掺杂的离子已进入主晶格中,没有多余的杂质。从 $CaMgSiO_4: x\% Sm^{3+}$ 荧光粉的光谱中可以看出,随着 Sm³⁺摩尔分数的增加,样品的发光强度先增大后减 小,掺杂摩尔分数为2%时发光强度最强。计算得出 Sm³⁺离子之间的相互作用属于电偶极-电偶极相互作 用。在提高发光强度方面,电荷补偿剂Li⁺的掺入改 变了Sm³⁺周围晶体场环境的对称性,使得CaMgSiO₄: 2%Sm³⁺, y%Li⁺荧光粉的发光强度相对CaMgSiO₄: x% Sm³⁺荧光粉的发光强度而言提高了2.3倍并且发 射峰积分面积也提高了85%。荧光粉的色坐标在红 色区域(0.605, 0.394)的色纯度高达93.3%。当温度 升到150℃时,发射峰的峰值强度保持在室温时的 73.5%,这表明该荧光粉具有较好的热稳定性。因此 所制备的荧光粉以其优异的性能有望应用于固体照明 白光LED器件领域。

参考文献

- [1] Khan S U, Khan W U, Khan W U, et al. Eu³⁺, Sm³⁺ deep-red phosphors as novel materials for white light-emitting diodes and simultaneous performance enhancement of organic-inorganic perovskite solar cells[J]. Small, 2020, 16(25): 2001551.
- [2] 王小军,梁利芳,陈凯,等.Sr₅MgLa_{2-xy}(BO₃)₆:xBi³⁺, yM(M=Eu³⁺,Y³⁺)荧光粉的合成及发光性能[J].光学 学报,2019,39(11):1116001.

Wang X J, Liang L F, Chen K, et al. Synthesis and luminescence properties of $Sr_5MgLa_{2,x,y}(BO_3)_6$: xBi^{3+} , yM (M=Eu³⁺, Y³⁺) phosphors[J]. Acta Optica Sinica, 2019,

第 59 卷 第 13 期/2022 年 7 月/激光与光电子学进展

39(11): 1116001.

- [3] 陈彩花, 王小军, 蒙丽丽,等.稀土离子掺杂LaAlO₃: RE³⁺(RE=Eu, Tb, Sm, Tm)荧光粉的发光性能[J].发 光学报, 2018, 39(7): 923-929.
 Chen C H, Wang X J, Meng L L, et al. Luminescent properties of rare earth ions doped LaAlO₃: RE³⁺(RE = Eu, Tb, Sm, Tm) phosphors[J]. Chinese Journal of Luminescence, 2018, 39(7): 923-929.
- [4] Feng H W, Xu H, Feng H T, et al. Tuning photoluminescence in the Ce^{3^+}/Tb^{3^+} doped $Ca_2MgSi_2O_7$ phosphors[J]. Optik, 2019, 193: 162967.
- [5] 糜万鑫,曹丽丽,楚司祺,等.绿色荧光粉 Sr₃P₄O₁₃: Ce³⁺, Tb³⁺的发光特性及 Ce³⁺→Tb³⁺能量传递机理[J]. 光学学报, 2019, 39(8): 0816002.
 Mi W X, Cao L L, Chu S Q, et al. Luminescence properties and energy transfer mechanism of Sr₃P₄O₁₃: Ce³⁺, Tb³⁺ green phosphors[J]. Acta Optica Sinica, 2019, 39(8): 0816002.
- [6] Zhong J M, Zhao W R, Lan L C, et al. Strong luminescence enhancement of Li₂CaSiO₄: Eu²⁺ phosphors by codoping with La³⁺ [J]. Journal of Materials Science: Materials in Electronics, 2014, 25(2): 736-741.
- [7] Pekgözlü İ. Synthesis and photoluminescence properties of MSr₄(BO₃)₃: Sm³⁺ (M = Li, Na)[J]. Optik, 2016, 127 (8): 4114-4117.
- [8] Singh V, Lakshminarayana G, Prabhu N S, et al. Reddish-orange emission from sol-gel derived Sm³⁺doped Sr₂La₈(SiO₄)₆O₂ phosphors[J]. Optik, 2021, 227: 165935.
- [9] Shi Z X, Wang J, Shi J, et al. Temperature characteristics of NaY(MoO₄)₂: Sm³⁺ and effect of Li⁺ doping on luminescent properties of phosphors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32 (21): 26086-26096.
- [10] Ma X X, Mei L F, Liu H K, et al. Structure and fluorescent properties of Ba₃Sc(PO₄)₃: Sm³⁺ red-orange phosphor for n-UV w-LEDs[J]. Chemical Physics Letters, 2016, 653: 212-215.
- [11] Fhoula M, Dammak M. Optical spectroscopy of thermal stable Na₂ZnP₂O₇: Sm³⁺/(Li⁺, K⁺) phosphors[J]. Journal of Luminescence, 2019, 210: 1-6.
- [12] Zhang X, Xu X H, Qiu J B, et al. Effects of Li⁺ on photoluminescence of Sr₃SiO₅: Sm³⁺red phosphor[J]. Chinese Physics B, 2013, 22(9): 097801.
- [13] 梁莹,彭跃红,杨尔均,等.蓝光激发CaBiNb₂O₉:Li⁺/Sm³⁺橙红色荧光粉的制备及发光性能研究[J].大学物理实验,2020,33(2):25-28.
 Liang Y, Peng Y H, Yang E J, et al. Synthesis and luminescence properties of orange-red phosphor CaBiNb₂O₉:Sm³⁺/Li⁺ under blue light excitation[J]. Physical Experiment of College, 2020, 33(2): 25-28.
- [14] Ma J, Huang B X, Zhao X C, et al. In vitro degradability and apatite-formation ability of monticellite (CaMgSiO₄) bioceramic[J]. Ceramics International, 2019, 45(3): 3754-3759.
- [15] Kim D, Lim D, Ryu H, et al. Highly luminous and thermally stable Mg-substituted Ca₂-_xMg_xSiO₄:Ce (0 ≤

第 59 卷 第 13 期/2022 年 7 月/激光与光电子学进展

研究论文

 $x\leqslant 1)$ phosphor for NUV-LEDs[J]. Inorganic Chemistry, 2017, 56(20): 12116-12128.

- [16] Li Y Q, Wang Y H, Xu X H, et al. Photoluminescence properties and valence stability of Eu in CaMgSiO₄[J]. Journal of the Electrochemical Society, 2010, 157(2): J39.
- [17] 胡芳芳, 龚海林, 王杰, 等. NaY₂F₇:Eu³⁺/Eu²⁺透明微 晶玻璃的结构和光谱性能研究[J]. 激光与光电子学进展, 2021, 58(15): 1516020.
 Hu F F, Gong H L, Wang J, et al. Structure and spectral properties of NaY₂F₇:Eu³⁺/Eu²⁺ transparent glass-ceramics[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516020.
- [18] Yantake R, Sidike A, Yusufu T. Effect of Eu³⁺ doping on luminescence properties of a KAlSiO₄: Sm³⁺ phosphor
 [J]. Journal of Rare Earths, 2022, 40(3): 390-397.
- [19] Verma T, Agrawal S. Investigation of TL characteristics of UV and gamma induced Eu³⁺ and Sm³⁺ activated Y₂O₃ phosphors[J]. Chemical Physics Letters, 2020, 743: 137158.
- [20] Zhou T S, Mei L F, Zhang Y Y, et al. Color-tunable luminescence properties and energy transfer of Tb³⁺/ Sm³⁺ co-doped Ca₉La(PO₄)₅(SiO₄)F₂ phosphors[J]. Optics & Laser Technology, 2019, 111: 191-195.
- [21] 海热古·吐逊, 吐沙姑·阿不都吾甫, 美合日古丽·麦麦 提,等. Sm³⁺掺杂天然钠长石(NaAlSi₃O₈)荧光粉的发光 性质研究[J]. 人工晶体学报, 2017, 46(9): 1697-1702, 1708.

Tuerxun H, Abudouwufu T, Maimaiti M, et al. Luminescent properties of Sm^{3+} doped natural soda feldspar(NaAlSi₃O₈) phosphors[J]. Journal of Synthetic Crystals, 2017, 46(9): 1697-1702, 1708.

[22] Yang L X, Mi X Y, Su J G, et al. Tunable luminescence and energy transfer properties in YVO₄: Bi³⁺, Ln³⁺ (Ln = Dy, Sm, Eu) phosphors prepared by microwave sintering method[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 7941-7951.

- [23] Chen C T, Lin T J, Molokeev M S, et al. Synthesis, luminescent properties and theoretical calculations of novel orange-red-emitting Ca₂Y₈(SiO₄)₆O₂:Sm³⁺ phosphors for white light-emitting diodes[J]. Dyes and Pigments, 2018, 150: 121-129.
- [24] Jia Y T, Xu D H, Wei C, et al. Synthesis and luminescence properties of orange-red phosphor Ba₂ScNbO₆:Sm³⁺[J]. Applied Physics A, 2019, 125(8): 1-8.
- [25] 张晗, 樊国栋, 阮方毅, 等. 电荷补偿剂 Mg²⁺对 CaAl₁₂ (PO₄)_{0.1}O_{18.85}: Mn⁴⁺红色荧光粉发光性能的影响[J]. 硅酸 盐学报, 2021, 49(9): 1985-1993.
 Zhang H, Fan G D, Ruan F Y, et al. Effect of charge compensator Mg²⁺ on luminescent properties of CaAl₁₂ (PO₄)_{0.1}O_{18.85}: Mn⁴⁺ red phosphor[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1985-1993.
- [26] Wang T S, Zhang W T, Wang X M, et al. $Ca_{19}Zn_2(PO_4)_{14}$: Dy³⁺, M⁺ (M = Li, Na, K) white-emitting phosphors: charge compensation effect of M⁺ on the photoluminescence enhancement[J]. Ceramics International, 2021, 47(10): 14260-14269.
- [27] Ju H D, Liu Y B, Huang X L, et al. Synthesis, photoluminescence and Li⁺ concentration effect on new reddish phosphor Li₂Sr₂Al(PO₄)₃:Sm³⁺ for white LEDs
 [J]. Inorganic Chemistry Communications, 2020, 120: 108152.
- [28] Zheng J L, Wu X L, Ren Q, et al. Investigation of luminescence properties and energy transfer in Sm³⁺ and Eu³⁺ co-doped Sr₃Y(BO₃)₃ red phosphors[J]. Optics &. Laser Technology, 2020, 122: 105857.
- [29] Cao R P, Wang X T, Ouyang X, et al. Thermally stable orange-red emitting Ba₂SiO₄:Sm³⁺ phosphor: synthesis and luminescence properties[J]. Journal of Luminescence, 2020, 224: 117292.